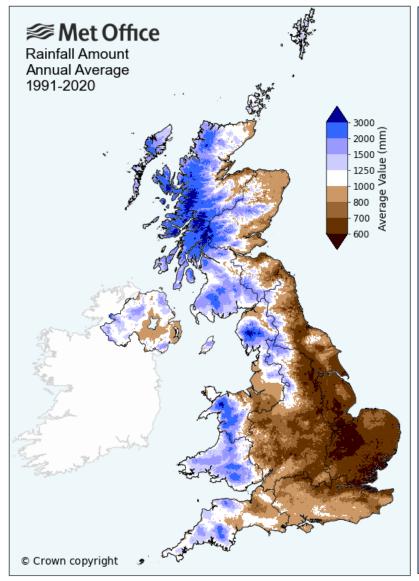
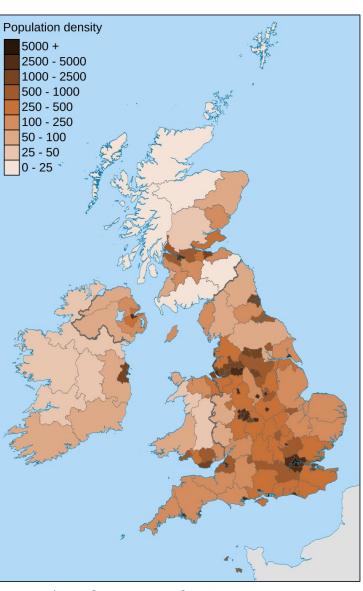


Waterway Restoration Conference 2025 Saturday 26th April

WATER TRANSFER The context


John Pomfret, IWA

Location: Waterways Museum, Ellesmere Port



Background to water transfer in the UK

THE ISSUE

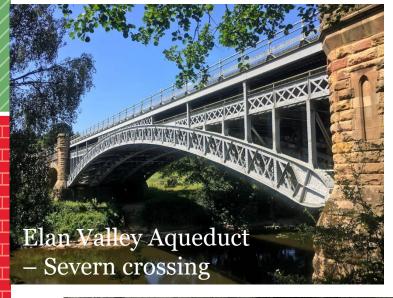
Contains public sector information licensed under the Open Government Licence v3.0

Contains Ordnance Survey data © Crown copyright and database right

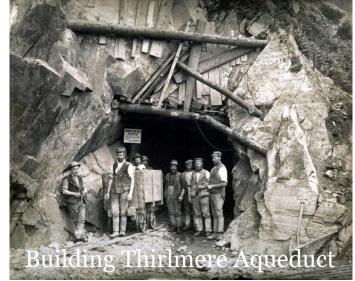
- Greatest rainfall in the UK is in the west and north
- Greatest population density is in the generally drier areas
- These areas are running out of water
- How can we move water to where it is needed?

WE HAVE BEEN DOING THIS FOR A LONG TIME!

- Long-distance aqueducts have been around since Victorian times
- So, there is a lot of experience available, some published

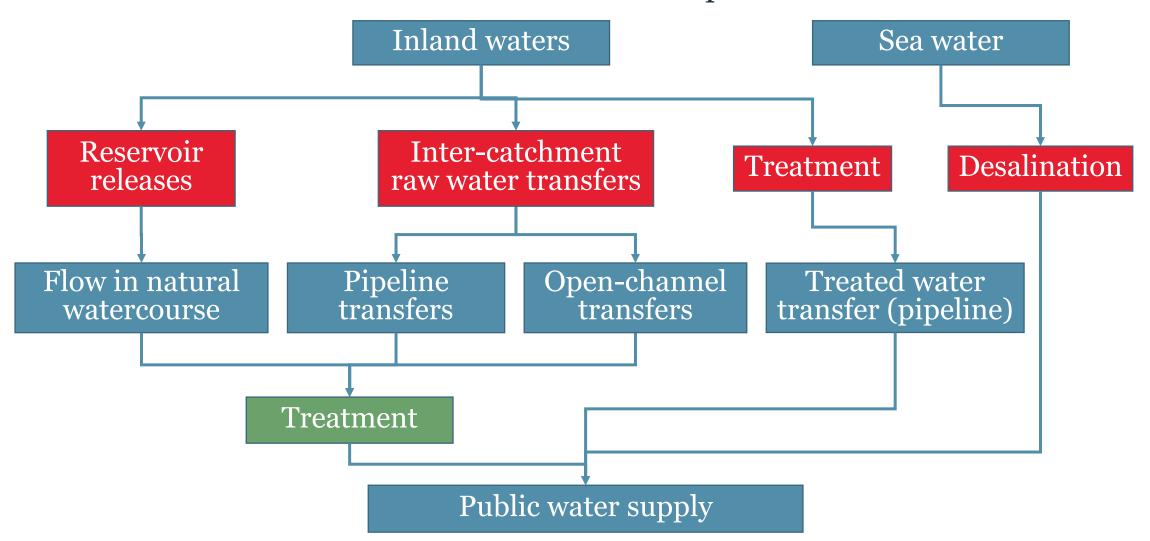


Location	Date	Owner	Length	Capacity	Drive	Treatment
Ware to Stoke Newington (New River)	1613	TW	>32 km	220 Ml/d	Gravity	Raw
Loch Katrine to Milngavie, Glasgow	1859	SW	42 km	110 Ml/d	Gravity	Raw
Thirlmere to Heaton Park, Manchester	1894	UU	154 km	250 Ml/d	Gravity	Screened
Nidd Reservoirs to Chellow Heights, Bradford	1899	YW	51 km	95 Ml/d	Gravity	Screened
Loch Katrine to Milngavie, Glasgow	1901	SW	38 km	120 Ml/d	Gravity	Raw
Haweswater to Heaton Park, Manchester	1955	UU	116 km	570 Ml/d	Gravity	Screened
Vyrnwy to Prescot, Liverpool	1892	UU	110 km	180 Ml/d	Gravity	Raw
Elan Valley to Frankley, Birmingham	1906	ST	126 km	345 Ml/d	Gravity	Raw
Catcleugh to Whittle Dene system	1906	NW	~72 km	205 Ml/d	Gravity	Raw
Ely-Ouse to Essex	1971	EA/NW	>200 km	455 Ml/d	Pumped	Raw
Trent to Witham to Ancholme	1974	EA	~75 km	180 Ml/d	Pumped	Raw
Riding Mill (Tyne) to Eggleston (Tees)	1979	NW	40 km	410 Ml/d	Pumped	Raw


WE HAVE BEEN DOING THIS FOR A LONG TIME!

• These aqueducts comprise tunnels, pipes and open channels

Nick Cooper, 2009. CC-BY-3.0


SOME TRANSFERS USE WATERWAYS

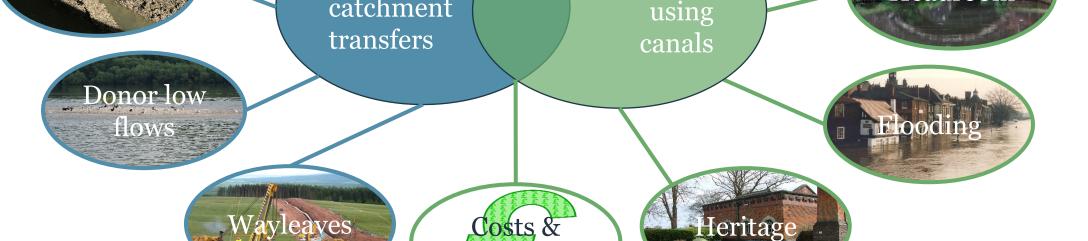
- Water transfer currently makes use of both navigable and formerly navigable waterways
- Comprehensive list is available

MANY OPTIONS

• Preference to stay within catchment for reasons of water quality and INNS but inter-catchment transfer is an option

Why are we talking about it at the Restoration Conference?

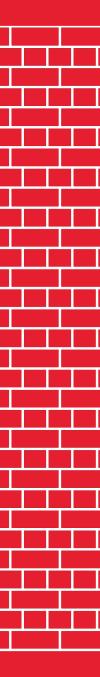
WATER TRANSFER AND RESTORATION



- Current water resource plans (SRO) are considering:
 - > new reservoirs
 - > water transfer
 - > desalination
- Some transfer schemes are being proposed that use canals or navigable rivers
- Potential for restoration schemes to form part of the plan directly as transfer route or indirectly via BNG credits for example
- Potential for new waterways as part of water transfer schemes

However, remember -

- Transfers may be required during drought periods only
- These projects can have <u>very long</u> lead times (but so do many restorations!) need to think ahead possibly to future SROs


ISSUES REQUIRING CONSIDERATION/MITIGATION INLAND water quality/silt top locks speed All inter-Transfers Headroom

liabilities

• We will consider these at the workshop later this morning

catchment

Now we will hear from Peter Walker and Sarah Jayne O'Kane about the Grand Union Canal Transfer project